A quasisecant method for minimizing nonsmooth functions
نویسندگان
چکیده
In this paper a new algorithm to locally minimize nonsmooth, nonconvex functions is developed. We introduce the notion of secants and quasisecants for nonsmooth functions. The quasisecants are applied to find descent directions of locally Lipschitz functions. We design a minimization algorithm which uses quasisecants to find descent directions. We prove that this algorithm converges to Clarke stationary points. Numerical results are presented demonstrating the applicability of the proposed algorithm in wide variety of nonsmooth, nonconvex optimization problems. We also, compare the proposed algorithm with the bundle method using numerical results.
منابع مشابه
A bundle filter method for nonsmooth nonlinear optimization
We consider minimizing a nonsmooth objective subject to nonsmooth constraints. The nonsmooth functions are approximated by a bundle of subgradients. The novel idea of a filter is used to promote global convergence.
متن کاملVariable metric method for minimization of partially separable nonsmooth functions
In this report, we propose a new partitioned variable metric method for minimizing nonsmooth partially separable functions. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Computational experiments given confirm efficiency and robustness of the new met...
متن کاملA Multidimensional Bisection Method for Unconstrained Minimization Problem
An extension of a new multidimensional bisection method for minimizing function over simplex is proposed for solving nonlinear unconstrained minimization problem. The method does not require a differentiability of function, and is guaranteed to converge to the minimizer for the class of strictly unimodal functions. The computational results demonstrating an effectiveness of algorithm for minimi...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملApproximate Level Method for Nonsmooth Convex Minimization
In this paper, we propose and analyse an approximate variant of the level method of Lemaréchal, Nemirovskii and Nesterov for minimizing nonsmooth convex functions. The main per-iteration work of the level method is spent on (i) minimizing a piecewise-linear model of the objective function and (ii) projecting onto the intersection of the feasible region and a level set of the model function. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 25 شماره
صفحات -
تاریخ انتشار 2010